The Search for Lepton Flavour Violating Decays in TWIST

R. Bayes $^{1/2}$ For the TWIST Collaboration

rbayes@triumf.ca

¹Department of Physics University of Victoria

²TRIUMF

Winter Nuclear and Particle Physics Conference February 18, 2007

Outline

- Motivation
- Method for the search
- Results of First Measurement
- Improving the Measurement

Two Body Decay Modes

- Implies a violation of lepton flavour symmetry.
 - Such interactions mediated by bosons including photons, familions, axions and quintessons.
 - Such interaction take the form

$$\Delta \mathcal{L} = F_{\mu e}^{-1} \bar{\mu} \gamma_{\rho} e \partial_{\rho} X_{\mu e}$$

- TWIST can only usefully measure "invisible" bosons
 - TWIST does not have the capability to observe photons

 The signal of the decay will be a peak at a momentum dictated by the mass of X⁰

Other Experiments

 Two previous measurements of this type (reported as 90% upper limits)

$$\begin{split} &\frac{\Gamma(\mu^{+} \to e^{+} X^{0})}{\Gamma(\mu^{+} \to e^{+} \bar{\nu}_{\mu} \nu_{e})} < 3 \times 10^{-4} \; [\text{Bryman:1986}] \; (\textit{X}^{0} \; \text{massive} \;) \\ &\frac{\Gamma(\mu^{+} \to e^{+} X^{0})}{\Gamma(\mu^{+} \to e^{+} \bar{\nu}_{\mu} \nu_{e})} < 2.6 \times 10^{-6} \; [\text{Jodidio:1986}] \; (\textit{X}^{0} \; \text{massless} \;) \end{split}$$

- Jodidio measurement involved a smaller phase space than TWTST
- Proposal has been submitted to measure familion production in muon decay at JINR (hep-ex/0612064)

- ullet $\mu^+
 ightarrow e^+ ar{
 u}_\mu
 u_e$ is the background for any exotic decay search
 - the muon decay spectrum is very well understood from Monte Carlo simulations
 - changes in the spectrum shape can be made with the addition and subtraction of simulated derivatives

- Assume the particle is long lived
 - detector resolution dominates the signa width
- constrain peak mean to a given subrange during fit

Goal is to define a branching ratio

- ullet $\mu^+
 ightarrow e^+ ar{
 u}_\mu
 u_e$ is the background for any exotic decay search
 - the muon decay spectrum is very well understood from Monte Carlo simulations
 - changes in the spectrum shape can be made with the addition and subtraction of simulated derivatives

- Assume the particle is long lived
 - detector resolution dominates the signal width
- constrain peak mean to a given subrange during fit
- Goal is to define a branching ratio

- ullet $\mu^+
 ightarrow e^+ ar{
 u}_\mu
 u_e$ is the background for any exotic decay search
 - the muon decay spectrum is very well understood from Monte Carlo simulations
 - changes in the spectrum shape can be made with the addition and subtraction of simulated derivatives

- Assume the particle is long lived
 - detector resolution dominates the signal width
- constrain peak mean to a given subrange during fit.
- Goal is to define a branching ratio

- ullet $\mu^+
 ightarrow e^+ ar{
 u}_\mu
 u_e$ is the background for any exotic decay search
 - the muon decay spectrum is very well understood from Monte Carlo simulations
 - changes in the spectrum shape can be made with the addition and subtraction of simulated derivatives

- Assume the particle is long lived
 - detector resolution dominates the signal width
- constrain peak mean to a given subrange during fit.
- Goal is to define a branching ratio

 $\mathcal{B} = \frac{\text{number of events in peak}}{\text{total number of events collected}}$

Isotropic Results using the 2002 TWIST data

- Used data sample of 6×10^7 muon decay events
 - A given peak has branching ratio on the order of 10⁻⁵
 - For the available masses the 95% upper limit (▲) for the branching ratio is 4.5×10⁻⁵

Isotropic Results using the 2002 TWIST data

- Used data sample of 6×10^7 muon decay events
 - A given peak has branching ratio on the order of 10⁻⁵
 - For the available masses the 95% upper limit (▲) for the branching ratio is 4.5×10⁻⁵

Isotropic Results using the 2002 TWIST data

- Used data sample of 6×10^7 muon decay events
 - A given peak has branching ratio on the order of 10⁻⁵
 - For the available masses the 95% upper limit (▲) for the branching ratio is 4.5×10⁻⁵

6/11

Anisotropic Results using the 2002 TWIST data

- If there is some parity non-conservation in the interaction then we might anticipate an anisotropic peak
- The input peak can be generated with a cos θ dependence
- Positive anisotropy generates a smaller upper limit
- Negative anisotropy generates a larger upper limit

Massless Exotic particles

- A massless particle should produce a signal at the endpoint
- There is a 5 keV/c resolution mismatch $(\sigma_p \approx 70 keV/c)$ in the 2002 data and Monte Carlo at the endpoint
- Produces a trough below and a peak above the endpoint
- Adding this to the background makes an estimate possible

 $B < 3.4 \times 10^{-5} 95\%$ conf

Massless Exotic particles

- A massless particle should produce a signal at the endpoint
- There is a 5 keV/c resolution mismatch $(\sigma_p \approx 70 keV/c)$ in the 2002 data and Monte Carlo at the endpoint
- Produces a trough below and a peak above the endpoint
- Adding this to the background makes an estimate possible

 $B < 3.4 \times 10^{-5} 95\%$ conf.

Massless Exotic particles

- A massless particle should produce a signal at the endpoint
- There is a 5 keV/c resolution mismatch $(\sigma_p \approx 70 keV/c)$ in the 2002 data and Monte Carlo at the endpoint
- Produces a trough below and a peak above the endpoint
- Adding this to the background makes an estimate possible

 $B < 3.4 \times 10^{-5} 95\%$ conf.

Improving the Measurement

- More data has been taken by \mathcal{TWIST} since this estimate was completed
 - New data are
 - of better quality
 - a larger sample of events (≈ 6 × 10⁹ events)
 - analysis has improved since 2002 analysis
 - better quality data means less events are lost in cuts

	2002 Data	2006 Data
Events Collected	2.6×10^{8}	6 ×10 ⁹
% Events After	12 %	17 %
Event Cuts		(current analysis)
% Events After	34 %	48 %
Fiducial Cuts		(current analysis)

 This indicates a factor 5 improvement is possible based on statistics alone

Improving the Limit on Massless Exotics

- Factor of 5 not sufficient to be competitive with the pre-TWIST result
- More complicated statistical analysis may be required
- eg. Use "signature" of the resolution mismatch to locate the endpoint and isolate peaks

Improving the Limit on Massless Exotics

- Factor of 5 not sufficient to be competitive with the pre-TWIST result
- More complicated statistical analysis may be required
- eg. Use "signature" of the resolution mismatch to locate the endpoint and isolate peaks
 - Natural anisotropy can also be exploited

Conclusions

- Measurement has been completed in 2005
- 95 % upper confidence limits have been set
 - isotropic decays at $\mathcal{B} \leq 3.4 \times 10^{-5}$
 - positive anisotropic decays at $\mathcal{B} \leq 2.0 \times 10^{-5}$
 - negative anisotropic decays at $\mathcal{B} \leq 5.0 \times 10^{-5}$
 - decays at the endpoint are of the same order
- No statistically significant decays have been found
- Improvements in available statistics and TWIST analysis suggest that the limits can be further decreased by a factor of 5.
- Further refinements to this analysis need to be made before a competitive limit can be set on massless exotic particles.

